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[. Introduction

The goal of the research is to apply analytical
approximation techniques to the problem of practically evaluating
fault-tolerant control system reliability and availability where
the system behavior is modelled by a finite state Markov or
semi-Markov process. The key property of fault-tolerant control
systems to be exploited is that component failures tend to occur
very infrequently relative to decisions by the redundancy
management (RM) system, which include false detection alarms,
detections of faults, identification of faulty components and
rejection of false alarms., This property tends to cause the
resulting Markovian model to exhibit behavior in two (or more)
distinct time scales: a fast time scale for the RM decisions and
a slow time scale for the component failures. O0f interest for
reliability and availability studies is usually the behavior that
occurs over durations intermediate to the two time scales. Under
certain conditions, this behavior can be approximated by an
aggregated model whose aggregated state classes reflect primarily
the number of component failures. Therefore, the RM decision
behavior is considered to have reached steady state
instantaneously in the time scale of interest. The advantage of
an aggregated model is that it includes only a fraction of the
number of states in the original model. It is therefore much
more amenable to practical computation than the original model,

which is computationally intractable even for simple systems.
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The approach to developing simplified models is based
primarily on the approximate aggregation theory developed in
[1,2]. The primary result from this development is summarized by
the following theorem:

Theorem: Given a perturbed finite-state semi-Markov process

ze(t) whose transition operator elements PE..(t) have the

1]
following dependence on €:
€ . . .
PYi5(t) = (py; - €ayy)hy(t/€) if i, jEE, (la)
= €qyshy (L/€)  if P€E,, jEE, (1b)
with < p.. =1 and where p;; and q.. are of order 1 and
jeg, 1] J i

where the set of classes {E } k=1 is disjoint and
exhaustive, If the Markov chains defined by the p1J
within a single class Ek represent an ergodic Markov process

Wwith stationary state probability distribution {ni(k)} for

each k(l1sksm), then:
;ig Prob {sojourn time from class E, to class Erst}
. _ o=\t
= Yyp (1 e k) (2)
where: Vip = [ 2 “.(k) T a.j]-[. z 7i(k) z qij]-l (3)
15Ek JeE 1eEk ]eEk
I U P R 100 B G- PR I SPES BN
1eEk jeEk 1€Ek ]EEk
T.= L pi. oTis (5) "
i jEEk iy "ij -
a
a
and where ;ij is the mean holding time for the holding time -
) Availability Codes
Avail ard/or
3 (// ‘ Spccml
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The proof of this theorem appears in [1] and some extensions and

related results appear in [2].

’ .

[} W SN LN

density hij(t)‘
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Some remarks aon the theorem are in order:

1. Models of fault-tolerant systems have structures similar
to the conditions of the theorem in that the pij
(unperturbed within-class embedded transition
probabilities) are of order 1 and the embedded transition f
probabilities out of each class are €-dependent and
usually Tinear in € where € is related directly to the ?
component failure rates. (However, see Remarks 3 and 4.)

2. The usefulness of the theorem stems from the fact that it
provides an approximate description of the slow
class-to-class transition dynamics over a time duration
on the order of 1/€ in terms of a finite state Markov
process with only as many states as there are classes.

These three properties (durations of order 1/€, small
number of states and standard Markovian behavior) are all
desirable for fault-tolerant system evaluation
calculations, Once the approximate interclass behaviar
is approximated in this way, the individual state
probabilities can be approximated as:
Prob {occupy state i at time t}
sn, (%) o Prob {occupy class k at time t} (6) .

1

where the approximate model provides the probability on »
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the right-hand side.

Unfortunately, fault-tolerant control system models tend
not to have ergodic classes Ek' In particular, systems
which do not include mechanisms for on-line recovery of
components declared previously to have failed yield
evaluation models that include trapping states and
transient states in most of the classes when € is zero.
For example, consider a system whose RM logic calls for
permanent shutdown of a component upon declaration of its
failure and which is subject to false alarms. One of the
states in a model for such a system is characterized by
all of the components working save one which has been
shutdown by a false alarm. Assuming zero probability for
component failures (i.e. €=0) and neglecting further
false alarms, this state becomes a trapping state in the
same class as the "all working" state, Therefore, the
"all working"” state is a transient state and the class is
not ergodic for €=0,

Also unfortunately, the holding time density functions
appearing in models of fault-tolerant systems tend not to
have the dependence on € exhibited in Eqn. (l1). Consider

the meaning of hi (t’€) for very small €: If hij(t) is a

j
typical unimodular density over [0,»] (such as
exponential, Erlang, gamma) with mean and maximum

location both of order 1 in t, then hij(t/e) approaches

...................
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an impulse function in t as € -0. In fault-tolerant

system models, € represents the component failure rate

while hij(t) is typically determined by the distribution

of the time to decision for the appropriate RM test

(particularly when i and j are both elements of the same

class). Thus, hij(t) is typically not dependent on the

failure rate although it does typically have its mean and
its maximum location at small values of t relative to the

length of a mission.

O 2

gi Qur research to the present has been directed toward

applying the results of the Theorem stated above to two
typical fault-tolerant control system models. In 1light of

Remarks 3 and 4, much of our recent work has been directed

toward modifications of the results of the Theorem and
investigation of the effects of violating some of the
conditions stated in the Theorem. The next Section briefly

describes our progress in these areas. -

'y "

P,

[I. Progress Summary

OQur work began with a careful examination of [1] and [2]

with regard to the import of the ergodic assumption discussed

in Remark 3 above. This examination revealed that the proof

of the Theorem above depended explicitly on the existence for

each class Ek of the inverse operator [I-Pk+ wk]'l where:

.........................................................................
..........................
................................

......
--------



[ = identity operator -4
Pk = transition probability operator for the embedded

Markov process describing transitions within class

o N

E, after € is set to zero (hence eliminating -4
out-of-class transitions)
L steady state transition operator associated with Pk’
if it exists

_liml T ,
= noo [ o421 Tk otherwise

,j As is stated in [2], if Ek is an ergodic class when € = 0 then
? [T -P + "k]-l is guaranteed to exist. Hence, the ergodicity
‘ of Ek is a sufficient condition for the existence of

[1 - P, + v 17" which in turn is a sufficient condition for
the Theorem. However, ergodicity is not necessary for the ;
existence of the inverse operator. As a particular example,

consider a class consisting of all transient states except for E
- a single trapping state where all of the transitions exiting }
the transient states enter the trapping state. Then Pk .’
contains a row of ones in the position of the trapping state
and is otherwise filled with zeroes. Then L has the same
berntte,

inverse operator exists. We have therefore proven the

form. Therefore, [I - P+ nk]' hence the

following:

Proposition: The results of the Theorem above are true if

N

the Markov chain defined by the p,.'s for classes {E

j %
has either of the following properties: 1) it is ergodic

L
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Wwith stationary state probability distribution {111.(’()}
(independent of the initial condition), or 2) the inverse

1

operator [I - P + nk]' exists and a valid steady state

probability distribution {ni(k)} can be found such that

" operating upon it reproduces it (and it may be

dependent on the initial condition, which must then be

known).

The fundamental importance of this proposition to
fault-tolerant system evaluation is clear from Remark 3.

Furthermore, it is relatively straightforward to numerically

calculate L from P_ and to compute {wi(k)} from L and the

k
given initial condition. It is then possible to numerically
evaluate the eigenvalues (or singular values) of I - Pk AL

which leads finally to an indication that the approximate
results of the Theorem hold (and also produces the required
steady state distribution {wi(k)} for each k) or to an
indication that the results of the Theorem do not hold.

we .nen proceeded to construct some typical models of
fault-tolerant systems in order to test the validity of the
results and to examine the conditions under which the
approximation fails. Two models of fault tolerant system
behaviour have been developed by Wereley. Both are based on
the single-component dual-redundant (SCDR) system. This is

the simplest fault tolerant configuration that may be

modelled. It consists of a primary component and a backup

Fhan %
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component with an independent failure detection test
monitoring each., The RM logic is simply to use the primary
component until its test indicates that it has failed at which
time a switch is made to the backup unless it is already
indicated to be failed.

The first model is assumed to have a sequential detection

tast for each component with decision time mass functions of

the hypergeometric type. No recovery from false alarms is

permitted. This particular model has seven states (it should
be noted that the 10-JAN-85 report stated incorrectly that EJ
this was a four state model) which decompose into three d
distinct classes as the probability of component failure in a
single time step tends to zero. Each of the three classes is i
non-ergodic due to the existence of a trapping state in each. E
This mocdel is simple enough that analytical transform

techniques, as well as numerical computations, may be used to

analyze its behaviour.

The second model is also assumed to have a sequential
fault detection test for each component with hypergeometric
decision time mass functions. However, this model includes a

false alarm recovery (FAR) test which is triggered by a

detection indication. This FAR test is simply the same
sequential test as for detection operating on the indicated
component (that is, the component that was indicated as failed

by the fault detection logic). The model has nine states

1

. Nl
"
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which again decompose into three distinct classes as the

F. probability of failure tends to zero. Each of the classes is
. now ergodic due to the presence of the FAR test. An attempt
3

is underway to analyze this model using analytical transform
techniques using the MACSYMA symbolic manipulation software
package. However, the large number of states may make
symbolic manipulation impractical. In that case, numerical
computations will be used to determine the behaviour of this
model.

A FORTRAN program has been developed to numerically
describe the behaviour of the two models. Work is currently
progressing on both the transform analysis and the application
of the approximation techniques to these two relatively simple
models.

Meanwhile, work has also been started on a more complex,
more realistic fault-tolerant system model similar to the one
described in [3]. Kwong has constructed a model for a fault

tolerant system with 3 redundant components, which employs the

Vector Shiryayev Sequential Test (VSST) (see [3]) to identify

and isolate failed components. The model is a 9-state

continuous parameter semi-Markov process. In the system, when
EE a component is isolated by the VSST, a self-test is initiated
. and the component will be brought back into operation when
there are two consecutive no-failure indications from the

self-test. The semi-Markov model can be decomposed into 3

10
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disjoint classes when the failure rate, €, of each component
is equal to zero. The classes are ergodic. Numerical results
for € = 2.5 x 10e-6 failures per second, show that the
normalized probabilities of occupying each state within each
class converge to the steady state probabilities of the
non-perturbed system for each class. Also, the steady state
probability distribution of the non-perturbed system can be
evaluated analytically. Therefore, the state probabilities of
the perturbed system can be approximated analytically if the
total probability within each class is known as a function of
time.

The results of Korolyuk and Turbin's theorem can be
applied to obtain the approximate total probabilities within
each class when time is scaled by a time-scaling factor.
Results of the analytical calculation and of a complete
numerical calculation are compared in Table 1 in terms of the
total probability of occupying each class. As one would
expect, the results are in relatively close agreement, never
differing by more than about 10%. By examining other values

of €, it was empirically found that € > 1072

led to
discrepancies in the results. It is of interest to note that
this is just two orders of magnitude smaller than the smallest

decision time rate assumed for the tests (see Table 1).

11
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Table 1. Exact Results vs. Approximate Results for Class
Probabilities: 9-State Model

Model parameters:

Component failure rate: 2.5 x 1070 gec !

False alarm decision rate: 107> sec !

Detection decision rate: .05 sec !

Recovery test false alarm rate: .05 sec !

Recovery test recovery rate: .1 sec |

Recovery test validation rate: .1 sec !

Recovery test miss rate: .05 sec 1

Probability of Occupying Class

(Exact: top line; Approximate: bottom)

Time(sec.) Class 1 Class 2 Class 3
40 .9997001 .0002999 3 x 1078
.9997000 .0002999 3 x 10-8

280 .9979038 .0020949 .0000013

.9979022 .0020963 .0000015

600 .9955171 .0044769 .0000061

.9955101 .0044832 .0000067

1200 .9910621 .0089137 .0000241

.9910404 .0089328 .0000269

1600 .9881047 .0118525 .0000428

.9880717 .0118806 .0000477

12
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We have also constructed a four-state model for the ]
S purpose of examining the impact of nonergodicity on the
: results. The basic four-state model involves "fast"
transitions between states 1 and 2 with "slow" transitions

occurring between these states and the remaining two states.

. o

A1l transitions are semi-Markov in nature with second-order
hyperexponential holding time pdf's. Several variations of
this model are currently under study, some with ergodic v
classes and some with nonergodic classes. The results are now :
being generated and should be available late in the Fall, '
We have also partially completed an analytical effort to
< circumvent the difficulty discussed in Remark 4 above. This
involves the introduction of a second small parameter into the
description of the process as a time-scaling parameter.
N Recall from Egn. (1) that in order to apply the results of
Korolyuk's theorem or our proposition, the transition kernel
elements of the perturbed process had to take the form:
peijhij(tlé)
where peij is proportional to € for interclass transitions but
is asymptotically (as € » 0) independent of € for intraclass

transitions. Consider now replacing this form by:

e -
p 1.J.ru1.j(t/es) -
where peij is the same as before. The asymptotic results of

the theorem remain true if 6§ is such that § = C&€ with

€ « C « %). This can be seen from Korolyuk's proof [1]. Note




that § is now a time-scaling parameter which is small. Now -
consider finding asymptotic results as € and & approach zero
separately. In effect, this is what we have done with our
modification. We do not have a rigorous proof as yet that the \
results are still asymptotically true (except for the case

cited above), but the empirical results so far have all been ?
: supportive. We will expand on this topic in the coming

months.

III. Papers and Presentations Derived from This Work -
A presentation was made at the following Workshop:
AFOSR Workshop on Reliability
Skyland Lodge
Shenandoah National Park, Virginia
May 28-31, 1985
The abstract and viewgraphs from this presentation appear in

Appendix I.

A brief reference to this work is contained in a paper
presented at a Conference in July:

B.K. Walker & D.K. Gerber, "Evaluation of Fault-Tolerant

System Performance by Approximate Techniques", Proc. of

7th IFAC Symp. on Identification & System Parameter

Estimation, York, UK, July 1985. .

A copy of this paper appears in Appendix II. .

14




IV. Projections for Second Year of Work

Our efforts will continu; on the models discussed in this
report. Of particular interest will be the results for models
with nonergodic classes and the efforts to employ two small
parameters in the description of the model. Furthermore, we
expect to be able to analyze some of the smaller models
analytically using a symbolic manipulation program called
MACSYMA, This will allow us to derive closed form transform
solutions for the smaller models which can be examined easily
for their asymptotic properties as the failure rate parameter
becomes small.

We also plan to construct a more realistic model similar
to the nine-state madel cited above. This model will use
actual holding time pdf data derived from simulations of
sequential fault diagnosis tests such as the VSST., This will
provide the information necessary to apply the approximate
results that we have derived (or modified) to a realistic
fault-tolerant system model.

In Tight of the many questions that have arisen as part
of our inquiries (particularly regarding the rigorous
justification for some of our analytical results), we
anticipate the need for further work and hence we plan to

submit a proposal to continue this work beyond next summer,

15




by

N

V. Financial & Manpower Status E
The manpower remains as it was proposed. Prof. Bruce K.

Walker devotes approximately 20% of his time to the project, s

primarily in a supervisory capacity. Two graduate students, E

Siu-Kwong Chu and Norman M. Wereley, work as full-time
graduate research assistants on the project. Margaret McCabe
devotes approximately 10% of her time to the project for
clerical support. No changes are anticipated.

With regard to the financial status, a substantial cost
underrun occurred in the first year of the project primarily
due to the timing of the project. A proposal will be
submitted to carry over the leftover funds into the second
year. Any significant changes proposed for the second year of

funding will accompany that proposal.

16
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D=COMPOSITION OF GENERALIZED MARKOVIAN MODELS CF FAULT-TOLERANT SYSTEMS -

MOTIVATIOM, PROGRESS AND PRIBLEMS

Bruce K. VWalker
Assistant Professor
Department of Aeronautics and Astroncutics
Massachusetts Institute of Technology

Siu-¥wongq Chu
Norman Werely
Graduate Research Assistants
Department of Aeronautics and Astronautics
Massachusetts Institute of Technology

These thraee presentations will summarize our work to Zate on
m2thods applied to Markovian models of fault-tolerant system
modals er2 very useful as design %fools for the avaluaticn of
reliazcility 2nd performance cf verious feult-tolarant system

First, we sh21l oresent the concept of medelling fault-tclerant system
behavior by Farxovien models. We shall discuss the construction of Markov
models for systems which use on-line fault diagnostic tests of the "single
sample” variety. This will illustrate *he generality of this modelling
method and the useful parformance rasults which can b2 ganerated bHy such
mod2Ts. It will also illustrate some of the practical problems that arise
whan complex systems are considered. We shall then Ciscuss the extension
of these mcdelling techniques to systems which use "sequential™ on-line
diagnostic tests. This requires the generalizetion of the modelling
technique to include semi-Markcvian models. It leads to further
applicability of the modelling method and also to further practical
problems for complex systems,

Mext, we shall oresent as an illustretive example the relatively simple
case cf 2 singl2 dual-redundant component with on-line diagnostics which
are used to implemant a primary/backup operating strategy. The Markov
model for this system will be presented and reliability results will
damonstrate that as the component mean time to faijlure (MTTF) becomes large
relative to the time increment between fault diagnosis testing a
decomposition of the model becomes apparent. A semi-Markov model will then
be developed for this system and similar results will be presented. \e
shall then discuss our efforts to generate analytical results based upon
the decomposition of this model when the holding time densities of the
semi-Markov mocdel are of a particularly simple yet relevant form (nemely
hypergeometric of order 2).




Finally, we shall review our progress sinze last fall on our efforts ¢
2only tne anelytical results cf Xorolvuk 212 Turbin to our models. Ve
gnall discuss the points at which medels of fault-tclerant systems vio
tma sufficient conditicons for 20n1ization of those results and how the
cenditions can ba relaxed or medifiad., Wz shell also prasent somo
numarizal resul®s that indicate *ne nea2d for extansinn of some of tne
igporoximations. w2 sn211 Zdiscuss our 2poroach to achieving suzh 21
extension.

P T N T A B : T et et e
<. e A e L s M LT e L

e e ~. . - - - P W IR A - R Y W -t et -t . . - SN DNENEY . -
O XA ST SIS IR ST C IS Y VIR LTS TS PN PE TS PV W WS




.rxw:lmvvzfq
' 5

1
’

-
r
'. _.
..4
.
)
E
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A "SINPLE" EXAMPLE

A SINGLE DUAL~REDUNDANT INSTRUMENT WITH THE STRUCTURE BELOW:

PRIMARY

HAS THE POLLOWING REDUNDANCY MANAGEMENT (RM) POLICY:

® EACH INSTRUMENT HAS AN INDEPENDENT PAILURE
DETECTION TEST

® THE PRIMARY IMSTNUMENT IS USED UNTIL A FAILURE
OF THE PRIMARY IS INDICATED, IN WHICHK CASE
THE PRIMARY IS TURNMED OFF AMND THE BACKUP
INSTRUMENT IS8 USED

® THE PAILURE DETECTION TRESTS ARE TURMED OFF
AFTER TME PIRST INDICATED PAILURE

@ THE SYSTEM WORKS IF A WORKING INSTHMIMENT IS
BEIRG USED

A BOMOGENEOUS MARKOV MODEL WILL BX DEVELOPED FOR THE ABOVE
M POLICY, NOTE THAT A FAILURE DETECTION DECISION IS AVAILABLE
AT EVEXY TIME STEP,

C T e T o et C et . . - P et T N et et . - - L . - .« . < e . ST e v - .
CIRAR S SRF LA T SR AR S W IR G WL PO I AP P G, DG S P 1 adad At st s A ain s iaaia ‘st alalalatadlal ctatatalet oAb a.a_a




%y v

~y

EVENT TREE FOR TRANSITIONS PROM STATE 1

Pk ¥

(1e200) (1=2Pfa) AB/AB (1) “

2Pfa AB/ (AB+AB) (2)

AB/AB 3t . AB/AB or A'B/ﬁ 2) ::.
(l=c)Pf AB/AB (3)
(l=c)Pf AB/AB (4)

STATE DEFINITIONS

l. BOTH INSTRUMENTS WORKING

3. ONE INSTRUMENT WORKING, THE OTHER TURNED OFF DUE TO AN
INDICATED FAILDRE

3. BACKUP COMPONENT PAILED UNCOVERED
_' 4. SYSTEM LOSS
BOTH THE PROBABILITY OF FAILURE OVER ONE TIME STEP Pf AND THE

PROBABILITY OF PALSE ALARM OVER ONE TIME STEP Pfa ARE SMALL
NUMBERS - TYPICALLY 10~6,

SINGLE-STEP STATE TRANSITION PROBABILITY MATRIX

- : h ‘
1-2(Ptepta) 0 0 0 .
2(rfavcet) 1-p£ c(1-Pf-Pfa) 0
: v T (1-c) Pt 0 (1-c) (1-P£=Pfa) 0
L (1-c) Pt Pt PLePfa 1
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WEW R POLICY

e EACH INSTRUMENT HAS AN INDEPENDENT SEQUENTIAL
PROBABILITY RATIO TEST (SPRT) TO DETECT FAILURES

BOTH TESTS ARE RESET ON ANY NOMINAL INDICATION

DECLARE PAILURE OF AN INSTRUMENT WHEN ITS SPRT
INDICATES A FAILURE

THE PRIMARY INSTRUMENT 1S USKED UNTIL A PAILURE OF
THE PRIMARY IS INDICATED, IR WHITH CASE THE PRIMARY
IS TURNED OFF AND THE BACKUP IS USED

THE PAILURE DETECTION TEST IS TURNED OFF AFTER THE
FIRST INDICATED FAILURE

THE SYSTEM WORKS IF A WORKING IWSTRUMERT IS BEING

USED BUT IS ROBUST ENOUGH TO SUSTAIN A PFAILURE PFOR
A “WHILE"

STATE DEFINITIONS FOR THE SEMI-=-MARKOV MODEL

1, BOTH INSTRUMENTS WORKING

2, ONE INSTRUMENT WORKING, THE OTHER TURNED OFF DUE TO A PFALSE
ALARM

3. ONE INSTRUMENT WORKING, THE OTHER TURNED OFF DUE TO A
COVERED PAILURE

4. PRIMARY INSTRUMENT FAILURE - NO INDICATION YET
S. BACKUP INSTRUMENT PAILURE - NO INDICATION YET,

6. SYSTEM LOSS

SEMI=-MARKOV TRANSITION DIAGRAM
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DUAL~REDUMDANT SYSTEN PERFONMANCE USING MARKOV MODZLS

THE STASS OCCIPANCY PROBABILITIRS ARE PLOTTED BELON MDER THE
POLLONING CONDITIONS s

NTBP = 300 heours MITFA = S00 hours
MISSION I8 = 23 hours TINE AXIS = 10 hours
COVERAGE PROBABILITY = 0,8
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- f
N €=2.5x10"° normalized -
nrobabilitie: v
unnormalized normalized distribution
- probabilities probabilities € =0 ( analytica
el state distribution distribution result )
- 1 0.8535 ° 0.8738 0.8738 0.8856
2 0.0708 0.0725 0.0725 0.0658 -
- 3 0.0524 0.0537 0.0537 0.0487 .
total probability
in lst. class 0.9767 1.0 1.0 1.0
4 0.0030 0.1279 0.1179 0.1250
5 _0.0157 0.6786 0.6875 0.6820
6 0.0040 0.1750 0.1783 0.1768 .
7 0.0002 0.0106 0.0094 0.0093
8 0.0002 0.0080 0.0069 - 0.0069
total probability ’
in 2nd. class 0.0231 1.0 1.0 1.0 A
o 9 0.0002 1.0 1.0 1.0 A

At= 4 sec.

time step = 800

s &

g




An Approximation (Korolyuk & Turbin, 1976)

Perturbed semi-Markov chain: &E(t) with ¢ a small

parameter, ey,
disyoint

State space partitions irto myclasses E E

l' e 0 m
where kernel matrix is:

€ . £
- for i, 3i°E

iy T P .

eqij i"Ey, JEL, r#

For each class E, . stationary distribution {ni(k)} exists

1 3 A
(always true if each class is ergedic),

Then: As ¢ -~ 0,
Prob (£7(5) = i} X n, + Prob {y(t) = k} (i"E)
where y(t) is a Markov process representing
class-to-class transition behavior with

mean time to transition derendent on mean

holding times and qij's.
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Problem: Ergodicity of Classes

Typical fault-tolerant system model:

_-——-\ P e ewm om eme e

\ /e od /? . + C +Y'A§r;n3
N - = —Z"€Craodic ™ = = — <" transie
b R ctates State

*Most models do not have ergcéic classes

® Ergodicity is sufficient but rot necessary.

® Also sufficient is existence of the inverse operator “‘of"d' C,‘”:

(I - P + n]-l

where: P is interval transition probability operator,

m is Cesaro limit of successive P operations, i.e.

(generates stationary operator if a stationary

distribution exists)

® Can check for this existence numerically.

..............
-----




Problem: ¢ - dependence

Our first case:

/

Pij(t) = le .(t)

Holding time pdf nct dependent on = (which corresponds
to failure rate in fault-tolerant system models).

events

FDI decision

even+5

I >

> _(s)

K L 1Sojourn time from class kX to class r,

k#r:®

(Yields Markovian behavior of Y in original
approximation.)

P
e
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SEMI-MAPKOV KEREL FOR THE CIASS TO CLASS PROCESS

@ (s) : Laplace transform of semi-Markov kernel for the process
&r

starts from state i in class Ek and moves to Er
f

pij(s) : Laplace transform of semi-Markov kernel
M o
Py (5) =
ey g ReBgeE

assume Yy . (s) is independent of superscript,

then one can deduce

TP T 99" hy o
Cfir (S) = \:u % ) i

e P, s ' s
G " me

............

RIPIN

..........
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WHAT FORM ¢ 1 FOR THE DE
0 Ig ¢ 21(s) LIKE THE MODEL

TRE T

S
N
b

) ©) a
assume L,X., ,Xw\ have the numerical values such that T.»"‘?’and 'T";’

T ha(9)
w.“‘ Gu HL (5)

i

@ t9)

1S 4+ R+ A€
[s+ (hew3e) |*

€ (2.+3%)
ALs+ 0\ v2n]?

:~44\<97—
TREE:
< \
b,

¢ ¢ cces not depend on € (?)
21 ———1
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i MATCHING THE CONDITICNS STATED IN THI PAPER

® propose the semi-Markov process depending antwo small parameters € and &
€ : class to class transition parameter

® : time scaling parameter

as ¢ and 8 -0
stale space

* semi-Markov processAE can be split into disjoint classes of
states E=§'Ek

* the sojourn of the process in a given state tends to zero

¢ tryiny -~ validate two smull parameters method and deduce ¥y (s)

. . . - "
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.t . P D Lt . AN At - .~< R T - . . s Te % "a . i “ - .. ¥
e A T L PO T A T S S A R A
AP RSN S S S e AP i R S G W REVE I SR aE 8y



CURRENT WORK

. “CONTINUE “SIMPLE" MODEL
8 * NONEPGODIC CLASSES

*SMALL ENOUGH FOR ANALYTICAL TRANSFORMS

*FURTHER NUMERICAL RESLLTS

o USE TWO SMALL PARAMETERS TO EXTEND ANALYSIS OF
LARGER MCIZEL

«HAS ERCODIC CLASSES

e FURTHER EXAMPLES

«[NVERSEZ CPERATCR CALCULATION (FCR EXISTENCE)
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EVALUATION OF FAULT-TCLERANT SYSTEM PEPFORMANCE BY APPROYIMATE TECHNIQLES

8ruce K. Walker

Dept. of Aergnauytics anc Astronautics, Massachusetts [nst:tute of Technology,

Cambridge, Massacnusetts, USA

Javid K. Gerper

United States Air Force, Williams AFB, Arizona, USA

Apbstract. An approximate method for calculating the statistics of the performance of
2 fauit-tolerant system is developed. An approximate metnod is necessary because the
statistical model of the system benavior is large-scale and the time norizon of
interest encompasses many cycles of the Redundancy Management logic. In the
development, a compact representation of the necessary nformation called the

v-transform is introduced ang discussed.

Based upon this representation, an

approximation that leads to a very efficient computational procedure is suggested and
numerically anaiyzed. A very brief discussion of other related work is also

presented.

Keywords. System failure and recovery; reliability theory; Markov processes;

stocnastic systems; numerical metnods
1. Introduction

The use of 1mbecded microprocessors anc other
computational gevices 1n the wmpiementations of
contrsl system desgns has given tne designer of
such systems the freedom to synthesize very compiex
control scnemes. The motivation for using such
sophisticated designs is the significant
enhancement of the system performance which can be

T oblained relative to designs which use very crude

I control strategies. These sopnisticatec 2esigns

cften involve the use of many sensing and actuating
components in an integrated control scneme. The

. components are often subject to failure or damage,

and it is often the case that the system
performance degrades dramatically or even becomes

* unacceptable or unsafe when one or more of tne

components ceases normal operation. Examples of
such systems include digital flight control systems
for statically unstable aircraft (such as the

- X-29), the flight and engine control systems for

VTOL aircraft, the attitude and shape control

—systems for large space vehicles, and the control
- systems of nuclear power plants.

The fundamental importance of certain components to
the acceptable or optima) performance of the
control system nas led to the incorporation of
redundancy and fault-tolerance into such systems.
Fault-tolerance may be achieved either by
replicating the hardware components which are
subject to faults or by implementing a system which
provides functional redundancy among its
components. In either case, the automatic contro?
system 1s then obliged to manage this redundancy by
monitoring the components for faults anc selecting
the components to be used i1n real time. This
function of the automatic system 1s referred to as
Regungancy Management (RM). ts implementation can
be as smple as a passive signal selectson scheme
from among replicated 1dentical sensgrs, or as
compiex as a sophisticated configuration selection
scheme based on automated logic which utilizes
elements of statistical decision theory.

The presence in the system implementation of a
Reduncancy Management function lends a cifferent
meaninn to the conceot of system performance. The

optwmal design performance will only be achieved
(cr approached) if all of the components remain
operational and the RM function performs
flawlessly. If either of these conditions are
violated, the system will in general perform less
tnan optimally. This suggests that the
"performance” of the system is not the optimal
performance that is attainable wnen everything is
working properly put rather is a random variable
which reflects tne occurrence of random component
failures an¢ ranzom RM decision errors. The
statistical properties of this rangom
"performance” vaiue is of great interest to the
designer of the system. It 1s the calculation of
tnese statistical performance properties with
which we shall concern ourselves in this paper.
The computational algorithms which result from th-
analysis can be thought of as design tools for tr.
faylt-tolerant control system designer.

Since component failures and RM decisions can bot-
be characterized as ~andom events, one of the
primary steps 1n the development of a performance
evaluation metnod is the construction of a
stochastic model for tnose aspects of tne behavig-
of the system which govern the performance. Ther:
ex1st two approaches to this modelling task: the
compinatorial method {1] and tne method of
generalized Markovian models [2]. It has been
snown that the former method is far more unwielay
than the latter when it is necessary to account
for tne time ordering of the random events which
may take place during a mission [3,4]. Since the
system performance may be impacteg cramatically by
such time-ordered events, this makes the latter
metnod far more attractive. Henceforth, we snall
assume that tnhe model to de dealt with 1s of the
generalized Markovian type, i.e. that tne model 15
a finite state Markov or semi-“arkov process whose
states correspond to the various possible
compbinations of failure events and RM gecision
events that can occur. This paver wil) empnasize
discrete parameter models. Similar analyses hold
for continuous parameter models.

When generalized Markovian models are used for
performance evaluation of realistically complex
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systems, & swmensignality orotiem arvses. Complex
fault-tolerant systems tend tc regu're many states
for their accurate characterizatior. Furtnermore,
tne operating time (or mission time. for such
systems tends to be long relative ¢ tne operating
cycle tmme of the RM system. Tnerefore, the
operating times of Interest are such tnaz tne
mocel must De propagated for many R™ cycle times.
A fyrtner cimensionality prodiem 1s engendered Dy
tne fazt tnat the system performance may pe a
functicn of the entire mistory of failyre and RM
cez1sion events. Tnese factors ali combine to
crcauce an expicsicn of the memory size and tne
nurper c¢f computations required to evaluate the
system performance. Unfortunately, tne
sirplifizations that are possible by using steady
state analysis of such models are not applicabie
pecause the operating time of a fault-tolerant
system tends %o De only a small fraction of the
mean time detween fairlure events. Therefore, the
transient benavior of tne model is of interest
while the steacy state benavior is not.

1~ this paper, we discuss some techniques that are
currently unger development that lead to
approximate results for performance evaluation.
First, we di1scuss a metnoc for discrete parameter
Marxovian models of fault-tolerant systems that
involves tne introduction of a "performance
transform.” By approximating the penavior of the
transform, 1t 1s possible to generate approximate
results for the probability mass function of the
rancom perfcrmance value. A means for mplementing
this aporoximation is suggested wnich makes use of
an alternatyve evaluation of the expected value of
tne performance. Subsequently, a methad for
continucus parameter models is briefly ciscussed
whicn explorts tne typical separation of time
scaies netween tne failure event nistory and the
RM gec sion nistery.

2. PERFORMANCE TRANSFORM METHOD

The behavior of many fault-tolerant system designs
can be captured by a finite state Markov process
with giscrete time parameter, The states of such a
model represent the various operational states of
the fault-tolerant system. They are characterized
by the operational status of eacn of tne
components and Dy the status of each of the
automatic fault dragnosis tests. For example, a
typical state 1n a model for a fault-tolerant
inertial measurement unit would be characterized
Dy the gyros and accelerometers which were still
working, tnose that nad already failed, and those
tnat nac been eliminated from yse by the RM
function (note that the latter two sets need NOT
be igentical) plus the status of all of tne fault
detection and isolation tests which the RM logic
uses. [f it can be assumed tnat tne time of
failure for each component is exporentyally
cistriputed {and hence 1S generatec Dy a
memoryiess process) and that each fault
¢1agnostics test operates only on 1nstantaneous
gata (end 15 therefore a’so memoryless), then tne
various compinations of faillure events and test
outcomes ¢an be formed wnich represent transitions
cf state “or tne system. If the propabilitires of
these transitions can De derived, tnen tne state
definitions and the transition probadiltties taxen
together constitute a Marxov model for the
evolution of the system configuration. These
models nave been used extensively n recent years
fo~ tnhe calculation of the reliability of
fault-tolerant systems [5,6,7,8].

wnen tne gperaticnal state ¢f tne system 1s sucr
tnet fewer tnan tne nominal numler cf componeats
are being used or su.n that some of tne componer:
1n uyse are no longer operaiing ncrmally, ther tn:
system performance 1s gegraged. Denencing upe~
the history of such non-nominal conditions, tne
overal! performance of the system 1~ executing '°
task will also suffer. Let s D2 the integer inge
0f thne state occuDled 2t twme step k Dy a cistret
parameter Markov model of the svstem Denavior.
Assume that J.(sk) is the contribution to the
overall systef pérformance of occupyIng state s
at time step k and that tnese contridutions are
Cumulative so that tne overall system performance
15 given Dy:

kl'l
Cost = kZ J,‘ (Su)
-l

Clearly, this overall performance value will de e
function of the time history of the operational
state (or OSH, for Operational State History) anc.
because each OSH is a sample function of a randor
process, the performance value will be a random
variable. It is possible to compute the
probability of occurrence of each and every OSH
from the single-step transition probvabiltty matr:
P of the Markov model and the initial state
probability vector g,, which is usually known anc
frequently consists &§f unity for the probability
of initially occupying a state characterized by
all normal components and zerces for all tne other
initial state probabilities. Once the probapility
of each OSH is known, tne entire probability mass
function (pmf) of tne performance value can de
constructed, and the problem is solved.

Unfortunately, the number of OSHs expands very
rapidly with elapsed time. If tne model consists
of S states whicn form a single communicating
class, tneg the numper of distinct OSHs may be as
Targe as S where x 1s elapsed time since tne
mission began. As was discussed in the
Introguction, the elapsed times of interest are
frequently large relative to the RM cycle time an:
S itself is frequently large. As a resuli, the
number of distinct OSHs bDecomes unmanageabiy
large.

Fault-tolerant systems freguently have the
property that component repair is not feasible
during a mission anc hence need not be consideres.
[n this case, the system configuration can only
degrade Que to failures or incorrect RM decisiors
Also, all fault-tolerant system models include a
state that represents configurations which are sc
degraded that they are unacceptable. This state -
tne system loss {SL) state, and it is a trapping
state wnen repair 15 not possible. These

c rcumstances lead to a situation wnere the numbe-
of distinct OSHs that a system can exhibit 1s not
exponential in the numper of states. It 15
sometimes possible to snhow that the numper of
grstinct OSHs 15 bounded by a linear function of
time, Nonetneless, even 1n tne latter case, “he
numder of OSMs quickly grows to a value tnat 1s
beyond the memory capability of even large
mainframe computers, This mo-ivates tne search
tor approximate metnods to comoute the statistics
of the system performance. we snail now present
suCh a method.

Consider a finite state Markov model of a
fault-tolerant system comprising N states, one of
which, namely s, 15 the SL trapping state.
Assocrated with the occupancy of each state for a
single time step Vs an inteqer-valued performance
measure. The assumption cf integral values here
15 not restrictive Decause a general performance
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measure can e resolved to the ntegers dy
giscretizing 'ts value. At this point, we shall
also assume that e performance values are
time-invariant. [f they are time-varying, the
algepbra becomes consicerably more cumpersome, dJut
the results cited zelow hold except <nere the
assumption of time-invariance is axplicitly
mentioned. I[f J(s.) again represents the
performance value 1ncurred by occupancy of state s
at time k, we nave that:

K
Pe—rF. = Z J (Sk)
k=1

where k_ is *he length of the mission expressed in
numper Of time stens, This performance value is
random because the QSH foilowed by the system is
random. Clearly, if we can calculate the
provability of each QSH that the system can
follow, then the characterization of the omf of
the system performance value will be complete.

A typical OSH over k time steps takes the form:

Gosin ooy i

which is a list of the states occupied by the
system at eacn of the k time steps. Here, the
system initially occupies state j and it occupies
state i at the k-th time step. Suppose there are
t..{k) such OSHs, all beginning in state j and
eAding in state i at th k-th time step byt
traversing many different states in between. For
the 1-th such OSH, let its probability be given by
p..(1,k) and the accumulated value of performance
bédzenotea J;;(1,k). e define the performance
transform or v-transform for this OSH as:

o hilW 3,11
mij(")k) =TZ=1 Pk v

The v-transfarm is a ccmpact way of reoresenting
the complete statistical characterization of the

. pergrmance of the system. Among its properties
are the follewing. [f we set v to unity 1n the
v=transform, we obtain:

(k)

éa. Pi (1,k)

which is the probapility of reeaching state i from
state j in k time steps, i.e. the multistep
transition probability from state j to state 1.

If we differentiate the v-transform with respect
"to v and then set v to unity in the result, we
obtain:

+:(W
> ey 3, (1K)

124
which is the expected value of the performance
after k time steps. This moment-qenerating

property of the v-transform extends to all higher
moments of the performance value as weil,

i

i

Because the performance values associated with
occupancy of eacn state are integer-valuyed, the
exponents in the v-transform are integers,
Therefore, the vetransform is always a polynomial
in v. The v-transform representation of the
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Jenavigr of =he performance value can therefaore be
made aven more comMpact Jy Compining terms in the
polynomials. This orocedure effectvely merges
0SHs wnose bDeginning and enging states are tne
same ang ~nose cumulat:ive cerfcrmance values are
1centicai. The groperTtes c1ta2d above ‘or the
v-transform remain n force after <nis IoMBInation
of terms,

The matr:x of v-transforms for all starting ang

ending states 1s Jenoted M{v,x). [ts propagat:on
n time 1§ governed Dy the difference equat:on:

M(v, k+1) = V, (V) M(v k)

wnere ¥, (v} is the single-step v-transform update
matrix 5ffec:1ve at time step k. V¥, (v) is
constructed from P by muitiplying eich row of P by
v raised to the power of the performance incurred
by occupancy of the corresponding state for one
tiem step at time k. [f these performance values
are time-invariant, then V, (v) reduces to V(v) and
the difference equation becomes:

M(v, k*i) = V(v) M(V) ,ﬂ)

The combination of terms described earlier can be
applied at each time step to reduce scmewhat the
number of terms in the polynomials comprising
M{v,k). Note, however, that the problem of
keeping track of a large numper of OSHs has not
been eliminated but merely converted into the
problem of keeping track of a large number of
polynomial terms.

Gl
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2y successively applying the difference equation,
we can generate the v-transform matrix M(v,k_).
Tre v-transform of the performance of the sygtem
assuming it started in state j and did NOT reacn
system loss during the mission is then given Dy:

Wilkd = 2 mig )

“in

(RN

3

SInce it is frequently the case that the system is
known to begin the mission with all components
operating and no fault detection alarms, it is
often truye than that the v-transform of the system
performance over the mission is given by W,(v,k_).
This v-transform completely represents the pmf .5
the system performance, which was the desired
resylt, However, it still suffers from the memory
difficulties associated with keeping track of a
‘arge numper of polynomial terms in generating it,
An 1ppreximation will now be discussed that
circumvents this gifficulty.
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Assuming once again that the performance values
are time-'nvariant, let r De a row vector of the N
values of performance ncurred by SCTUPyIng each
of the N states for one time step. L2t R(k) be
the row vector of expected performance after k
time steps starting from each of the N states of -
the model. Then, *he “heory of Marxov processes )
with rewards [10] yields the following result:

k .
RW=1rJ P" R
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Because state N is the SL trapping state, the
elements of (k) all tend toward a steady state N
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" generited the v-transform matrix M{v, k) whose

. aiready been comdined.

TV~

TV Yy

isymptote whicn 1s linear with a slope of r.
Canstger this value for a moment. [t ¥ tne
performance value :incurreg for gccupancy of tre SL
state for a single time step. MNote, nowever, that
to the system designer, the fact that :ne system
has reached the system loss stat2 means that the
system is no longer capable of operating.
Therefore, its "performance” upon reacning this
Tevel of Zeqradation is irrelevant. Hence, tre
value cnhosen for r, is irrelevant except to the
benavior 3f Rik). In lignt of znis fact, we
cnoose r,, 2qual to zero to avoid a steady state
increae in the values of R(k].

Let us consider again the interpretation of R{k}.
The alements of R(k) are the expected values of
the rotal accumulated performance over < time
steps starv:ng from 2ach of the nodel states at
time 0. Since the system usually starts from
state 1, let R, (k) pe denoted J(k). This is the
expected perfotfmance over k time steps for ALL
0SHs beginning 1n state 1, including those which
end in state N, the SL trapping state. Note
again, however, that JSHs ending in the SL state
are not of interest in gerformance evaluation
(except in tne computation of “he system
unreiiabrlity). Therefore, (k) can pe decomposed
nto two parts: the portion M (k) which 15 the
expected performance fo- thosé 0SHs not ending in
the SL state and therefaore of interest, and the
portion Jc, (k) «nich is the expected performance
accumulatdh by tnose 0SHs ending in the SL state
ana therefore not of interest. Figure 1
illustrates the relationsnip between trese three
quantities for a typical example. Note that the
mission tme k_ s typically snor® relative to the
t-7e 3t wnich Phe expected perfarmance Dehavior
approaches st2ady state.

set %0 zero, it is a ~elatively easy
matter %9 generate the elements of R(k) for any k
and, in particuiar, %o generate R(k_). This can
be done using moaal deccmposition [9Y] or any other
rumerically well-benaved algorithm. R(k_} can
then e ysed ‘n %he “ollowing aporox imat Yon
scheme.  Note that R (k_) is an upper pound for
the expected derformance accumulated over k_ time
staps beginning “ram state i and is therefore also
an upper j0und fir ihe axpected zerformance to de
accumulated over a<k_ t:me steps leginning from
Consider a"time step k at which we nave

{(1,5)-th eiement is m. (v ,k) wnich n turn
ccmprises many terms of he form Av® wnere we rave
assumed that terms with like exponents have
The approximation we shall
use 15 produced dy neglecting all such terms 1n
M. .{v,x) that are such that:

td

A [b+ Rl(km)] < tolerance

This has the effect of discarding all QSHs at time
k which are expected to have a small contrbution
to the statistical sroperties of “ne performance
over the mission. Note that OSHs “hat nave
accuwiated only a smail performance value 4p %0
time k and have a small propability mignt st1ll be
retained Dy th1s approxmation 1f ‘t 15 expected
that *ney will accumulate a Targe performance
valye curing “he remainger of the mission. This
makes “he aporoxImat:ion <uch less risky than
d1scarding all OSHs wnose contrisytion 0 *he
expeczed performance at %°me x 15 smail without
regardg to wnat their future contriduticn might Je.

in the next Section, 3 rule of thumb s Suggested
for setting tne tolerance value aopearing 1n the
aoproximation, Note that larger ‘*oierances result
‘1 more discarded terms and nence less
ccmputational effort and memory burden at a cost
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of Tess accuracy. This traceoff 15 aiso examineg
oriefly 1n the ntext Secticn.

1. Resuits

In this Section, we ariefly summarize scme
aumerical results for a 50-stat2 -odel of a
fault-tolerant system. The overall systam 1s
Assumed to COMPrise an actuator supsystem and a
sensor subsystem, These “wo subsvstems are
identical in their regungant arc=aitecture and
thetr QM 'ogic dut are ccmpletely ingependent
otherwise. The Markov model €or asne subsystem :s
shown 1n Figure 2 where 0 represents a correct
detection of a failure, D represents a “missea”
detection, D represents a false cetection, [
represents the isolation of a failure following a
detection, [ represents no isolation following a
detection, and [ represents the isolation of the
wrong component following a detection. Table !
Tists the values of the conditional probabilities
of these events for each time step that were
assumed. The actuator subsystem was assumed to
consist of components whose mean time to failure
was 25 hours. The sensor subsystem components
were assumed to have a mean time to failure of 100
hours. The time step, which corresponds in such
models to the time between successive failure
detection tests, was assumed to be 1 second. The
performance associated with occupancy of each of
the states of the model was based in the case of
the sensors upon the achievable accuracy of the
estimation of a three-dimensional quantity
measured by the sensor array. A failed sensor wac<
assumed to produce a measurement with an
icditional error of 3 relative ‘o a good sensor
wnere is the standard deviation of the random
2regr in the measurement from one sensor. The
actuator performance values were scaleg uo from
t~e sensor performance values to reflect the
1ncreased importance to a control system of the
actuators. Jetails on the model construction can
ce founa ' [9].

when the 'wo independent models are combined, the
overall system model consists of 49 operational
states plus a SL state for a total of 50 states.
0f course, 1n this particylar case there is a9
neeg o0 compine the subsystem models nto an
overall model in light of their independence.
However e d0 sO here in grger to demonstrate the
applicap1lity of our metnod to large models, wnich
are typical in the field of fault-tolerant system
performance evaluation.

The results described here were generated on 3
mogified Hewlett-Packard 9826U microcomouter. The
major 'wmitation was the limited amount of memory
avarlaple for use. As a result, rosults could
anly be generated for the S50-state model up %o 11l
time steps wnen the *clerance was very small, [t
as many s 30,000 OSHs must Je kept track of even
after merging those that have the same 2nding
states and same performance values. A computer
with virtual memory allows for much longer runs.
Nevertheless, the characteristics exmibited by the
results after 111 time steps are sufficrent to
illustrate the 'nsignt that can be jained from a
performance evaluation tool.

Figures 3, 4 and 5 11lustrate the effect of the
toierance level 1n the approximation on the
results. Zach is a plot of the ccmputed

performance omf after 150 time steps for a 7-state
model wnich is symilar in scope to the S-state
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noge’ for 2ach of <ne subsystems cescrUded above.
The probability axts {vertical) an eacn dlot s
logar:thmic., The point at wnich the :dlerance
begins to have a orofound effect.on the cssults 'S
at a tolerance level between 10°° and 10°°. The
total expected performance for this system at 150
time steps (i.e. the expected value of the
perfarmance accumulated by QSHs up to this time
point without regard to wnether or not they have
ragched the SL state) is §2.7. HMence, the
performance pmf results begin to break down wnen
tne “clerance reaches a value approximately 4
decaces Delow the zotal expected performance for
tne mission (which can be calculated easily by the
Markov orocess with rewarags result). In all of
the resulits generated in this study so far, thrs
nas ceen a good rule of thump: Set the tolerance
at least & Jecades below Zhe total expected
performance to avoid inaccurate results for the
approximate performance omf,

Returning to the 50-state model, the value of its
expected performance at 350 time steps is 4560,
By the ruie of thumb above then, the tolerance
snould be set no larger than 0.4 to generate
reasonably accurate results for the performance
pmf. Figure & is the performance pmf for the
50-state mode) after 350 time steps using a
tolerance of 0.1. Note that this value of the
tolerance has allowed propagation of the
v-transform matrix to a numper of steos at which
as many as 100,000 different OSHs would have to be
kept track of were it not for the approximation.

Further results for these models are given in (9],
wnicn also uses the modal decomposition of “he
resuit form tne theory of Markov orocasses with
rewards %0 generate a reduced arcer model that
aoproximates the performance denavior of the
5J-state moge!l.

4. Brief Discussion of Other Work

A ralated researcn effort is currently exploring
anpther avenue towarda “he jensration of
approximate performance evaluation results for
fault-tolerant systems. This work exploits the
separation in time scales of the failure bHenavior
of ccmponents and the benavior of the tests usag
t0 Zetact ang isolate those fartlures. In
carticular, a weil-designed fault-tolerant system
ncludes a farlure detection mechanism which
ldetacts and isolates farlures very quickly. On
the Jther nand, the failures themselves tend to
accur anly rarely and are therefore consigerably
spread Jut in twme. If a finite state Markov
mogel or semi-Markav model 1§ constructed %0
rapresent the behavior of the fault-tolerant
system, then it oftentimes naturally deccmooses
into classes of states. The states within each
class are such “hat *he transitions Detween them
are frequent with small holging *imes as
determined by the farlure detectron decision
processes. Meanwniie, the ‘ransitions Setween *he
classes are governed by the faillure processes ang
are *therefore mucnh slower and less frequent, Once
the system mocel is recomposed in this fasnion, 1t
15 aimost n 2 form to whicn some recent resuylts
from tne *Heory of Markov1an Jrocesses with rare
events zan de 1pplied. However, for
faylt-tolerant system models, there remain a few
difficuities. Overcoming these difficulties s
the subject of our current efforts,

5. Zonclusien

In tnvs paper, ~e "ave Jriefly zescrized scme
aporoximate tecnnigues fir 2valuatieg tne
statistical properties of %-e cer<crmance 3f
faylt-rglerant :ontrol systems. s sucn systems
come into wider use, “he 3va''api'tty 3f zesign
tools nased upcn perrormance 2valuitiin techniques
w111 ce sncreasingly 'mpor<ant. The method
gescreoed nere sircumvents tte d1¥€tcylty of
dimensionaltty eacountered dy straightéarward
comprnazorial ang Marxovian tecnniques Jy
ntroducing the v-transform ~ecresentaton ang
then using 't %0 suggest an 3acproximate
simplification whicn "ncreases ccnsideraply the
efficiency af the performance evalualion aigorithm
for large-scale nogels without sacr-fic'ng
sgnificant accuracy. Some numer-cal results
illustrate a rule of *humb fo~ using the algorithm
and 11lustrate some of the useful per‘ormance
propercties tnat result,
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